時(shí)效強(qiáng)化aging strengthening:是指在固溶了合金元素以后,在常溫或加溫的條件下,使在高溫固溶的合金元素以某種形式析出(金屬間化合物之類),形成彌散分布的硬質(zhì)質(zhì)點(diǎn),對(duì)位錯(cuò)切過造成阻力,使強(qiáng)度增加,韌性降低。
固溶強(qiáng)化solution strengthening:就是合金元素在基體金屬晶格中存在使晶格產(chǎn)生畸變,位錯(cuò)運(yùn)動(dòng)阻力加大。通常也是強(qiáng)度增加,韌性降低。
細(xì)晶強(qiáng)化(也叫晶界強(qiáng)化)grain refining strengthening:可以通過形變-再結(jié)晶獲得較細(xì)的晶粒,使強(qiáng)度和韌性同時(shí)提高。
形變強(qiáng)化 working hardening:隨著塑性變形量的增加,金屬流變強(qiáng)度也增加,這種現(xiàn)象稱為形變強(qiáng)化或加工硬化。
彌散強(qiáng)化 dispersion strengthening:材料通過基體中分布有細(xì)小彌散的第二相細(xì)粒而產(chǎn)生強(qiáng)化的方法,稱為彌散強(qiáng)化。
纖維強(qiáng)化 fiber strengthening:用高強(qiáng)度的纖維同適當(dāng)?shù)幕w材料相結(jié)合,來強(qiáng)化基體材料的方法稱為纖維強(qiáng)化。
輻照強(qiáng)化 radiation hardening:由于金屬在強(qiáng)射線條件下產(chǎn)生空位或填隙原子,這時(shí)缺陷阻礙位錯(cuò)運(yùn)動(dòng),從而產(chǎn)生強(qiáng)化效應(yīng)。
金屬材料的強(qiáng)化方法
金屬材料的強(qiáng)化途徑,主要有以下幾個(gè)方面;
(1)結(jié)晶強(qiáng)化。結(jié)晶強(qiáng)化就是通過控制結(jié)晶條件,在凝固結(jié)晶以后獲得良好的宏觀組織和顯微組織,從而提高金屬材料的性能。它包括:
1) 細(xì)化晶粒。細(xì)化晶??梢允菇饘俳M織中包含較多的晶界,由于晶界具有阻礙滑移變形作用,因而可使金屬材料得到強(qiáng)化。同時(shí)也改善了韌性,這是其它強(qiáng)化機(jī)制不可能做到的。
2) 提純強(qiáng)化。在澆注過程中,把液態(tài)金屬充分地提純,盡量減少夾雜物,能顯著提高固態(tài) 金屬的性能。夾雜物對(duì)金屬材料的性能有很大的影響。在損壞的構(gòu)件中,??砂l(fā)現(xiàn)有大量的夾雜物。采用真空冶煉等方法,可以獲得高純度的金屬材料。
(2)形變強(qiáng)化。金屬材料經(jīng)冷加工塑性變形可以提高其強(qiáng)度。這是由于材料在塑性變形后
位錯(cuò)運(yùn)動(dòng)的阻力增加所致。
(3)固溶強(qiáng)化.通過合金化(加入合金元素)組成固溶體,使金屬材料得到強(qiáng)化稱為固溶強(qiáng)化。
(4)相變強(qiáng)化。合金化的金屬材料,通過熱處理等手段發(fā)生固態(tài)相變,獲得需要的組織結(jié)構(gòu),使金屬材料得到強(qiáng)化,稱為相變強(qiáng)化.
相變強(qiáng)化可以分為兩類:
1) 沉淀強(qiáng)化(或稱彌散強(qiáng)化)。在金屬材料中能形成穩(wěn)定化合物的合金元素,在一定條件下,使之生成的第二相化合物從固溶體中沉淀析出,彌散地分布在組織中,從而有效地提高材料的強(qiáng)度,通常析出的合金化合物是碳化物相。
在低合金鋼(低合金結(jié)構(gòu)鋼和低合金熱強(qiáng)鋼)中,沉淀相主要是各種碳化物,大致可分為三類。一是立方晶系,如TiC、V4C3,NbC等,二是六方晶系,如M02、W2C、WC等,三是正菱形,如Fe3C。對(duì)低合金熱強(qiáng)鋼高溫強(qiáng)化最有效的是體心立方晶系的碳化物。
2) 馬氏體強(qiáng)化。金屬材料經(jīng)過淬火和隨后回火的熱處理工藝后,可獲得馬氏體組織,使材料強(qiáng)化。但是,馬氏體強(qiáng)化只能適用于在不太高的溫度下工作的元件,工作于高溫條件下的元件不能采用這種強(qiáng)化方法。
(5)晶界強(qiáng)化。晶界部位的自由能較高,而且存在著大量的缺陷和空穴,在低溫時(shí),晶界阻
礙了位錯(cuò)的運(yùn)動(dòng),因而晶界強(qiáng)度高于晶粒本身;但在高溫時(shí),沿晶界的擴(kuò)散速度比晶內(nèi)擴(kuò)散速度大得多,晶界強(qiáng)度顯著降低。因此強(qiáng)化晶界對(duì)提高鋼的熱強(qiáng)性是很有效的。
硼對(duì)晶界的強(qiáng)化作用,是由于硼偏集于晶界上,使晶界區(qū)域的晶格缺位和空穴減少,晶界自由能降低;硼還減緩了合金元素沿晶界的擴(kuò)散過程;硼能使沿晶界的析出物降低,改善了晶界狀態(tài),加入微量硼、鋯或硼+鋯能延遲晶界上的裂紋形成過程;此外,它們還有利于碳化物相的穩(wěn)定。
(6)綜合強(qiáng)化。在實(shí)際生產(chǎn)上,強(qiáng)化金屬材料大都是同時(shí)采用幾種強(qiáng)化方法的綜合強(qiáng)化,
以充分發(fā)揮強(qiáng)化能力。例如:
1)固溶強(qiáng)化十形變強(qiáng)化,常用于固溶體系合金的強(qiáng)化。
2)結(jié)晶強(qiáng)化+沉淀強(qiáng)化,用于鑄件強(qiáng)化。
3)馬氏體強(qiáng)化+表面形變強(qiáng)化。對(duì)一些承受疲勞載荷的構(gòu)件,常在調(diào)質(zhì)處理后再進(jìn)行噴
丸或滾壓處理。
4)固溶強(qiáng)化+沉淀強(qiáng)化。對(duì)于高溫承壓元件常采用這種方法,以提高材料的高溫性能。
有時(shí)還采用硼的強(qiáng)化晶界作用,進(jìn)一步提高材料的高溫強(qiáng)度。